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1.1 Introduction

A very common class of fluid-structure interaction problems involves the dynamics of flexi-
ble fibers immersed in a Stokesian fluid. In biology this arises in modeling the flagellae or
cilia involved in micro-organismal locomotion and mucal transport, in determining the shape
of biofilm streamers, and in understanding how biopolymers such as microtubules respond to
the active coupling afforded by motor proteins. In engineering it arises in the paper processing
industry, where wood pulp suspensions can show the abrupt appearance of normal stress dif-
ferences, and in micro-fluidic engineering where flow control using flexible particles has lately
been explored. Flow induced buckling of fibers is an important determinant on fiber transport
in those flows, as well as for the fluid mechanical stresses that develop.

Over the past decade, the dynamics of immersed fibers has been studied intensively, particu-
larly through theoretical means. Specialized numerical methods, such as those based on slender
body theory or other methods, have been developed to efficiently simulate their dynamics in a
variety of flow situations. On the experimental side, recent advances in micro-fabrication and
flow control have led to an increasing number of experimental studies. Both theoretical and
experimental studies have identified and studied canonical buckling instabilities of fibers under
flow forcing, though experimental work is still lacking in precisely linking fiber deformation to
fiber transport. A practical understanding could be used in a variety of applications. For exam-
ple, by linking deformation and transport to applied flow rate in specific flow geometries, new
flow sensors or separation devices could be designed. On both the theoretical and experimental
side, there is, as yet, little understood of how the macroscopic properties of fiber suspensions
depend upon the microscopic dynamics of flexible fibers. Such an understanding would yield
better control and exploitation of such systems.

1.2 Mathematical Modeling

The interaction of elastic fibers with flows is a specialized type of fluid structure interaction for
which specialized mathematical descriptions and computational methods have been developed.
The most basic and easy to use of these is local slender-body theory (SBT), which gives a
local anisotropic relation between elastic and drag forces. Nonlocal hydrodynamic interactions
can be captured through use of higher order, more complex, slender-body formulations, or
through other approaches such as immersed boundary methods, bead-rod models, or regularized
Stokeslet methods.

1.2.1 Background
To set the stage, consider a slender elastic fiber of length L, of circular cross-section with radius
a (hence ε = a/L << 1), and flexural rigidity E = Y I with Y the material Youngs modulus
and I the areal moment of inertia (I = πa4/4). This fiber is immersed in a Newtonian fluid
of shear viscosity µ with the fluid motion characterized by a strain-rate γ̇. Neglecting inertial
forces in both fluid and fiber, three important forces are in play: Brownian forces∼ kT/L, drag
forces ∼ µγ̇L2, and elasticity forces ∼ Y a4/L2. For most of the work reviewed here, though
not all, drag and elasticity forces dominate Brownian forces. That predominance requires that
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L >> L1 = (kT/µγ̇)1/3 and L >> L2 = (kT/Y ε4)1/3. Taking water as the solvent, a fluid
strain-rate of γ̇ = 1 s−1, a fiber of aspect ratio ε = 10−3, and a material modulus of Y = 1GPa,
we find L1 = L2 = 1 µm.

1.2.2 A Simple Beam Model
Again, consider a slender elastic filament of length L, a circular cross-section of radius a at
its midpoint, and centerline position X(s, t) with −L/2 ≤ s ≤ L/2 its signed arclength. The
immersing fluid is assumed to be Newtonian with viscosity µ, and the flow is assumed to be
“slow” so that Re << 1 and the fluid dynamics is described by the Stokes equations. The
suspending Stokesian fluid exerts surface stresses upon the fiber, which are balanced by its
bending and tensile forces. Perhaps the simplest nonlinear model of these elastic forces is given
by the inextensible Euler-Bernoulli beam, for which

f(s, t) = −EXssss + (T (s, t)Xs)s (1.1)

Here f has units of force per unit length and can be considered as the surface stress circumfer-
entially averaged around the fiber. The first term is the bending force (per unit length) with E
the flexural rigidity. Subscripts refer to partial differentiation. The second term is the tensile
force (per unit length) with T being the ”axial tension”. The role of the tension is to enforce
the condition of inextensibility that states that the arclength s gives a material parametrization
of the filament centerline and so s and t are independent variables. Hence, ∂st = ∂ts, which
generates a constraint on the centerline velocity Xt = V as follows: That s is arclength means
that Xs · Xs = 1, and so 0 = ∂tXs · Xs = 2Xs · Xst = 2Xs · Xts = 2Xs · Vs. That is,
Xs · Vs = 0, which is a scalar constraint that is satisfied through determination of the scalar
tension T . Note that in a Stokesian fluid, velocities depend linearly upon forces, and so this
constraint is a linear equation for T .

1.2.3 Local SBT
One approach to modeling the dynamics of an immersed flexible fiber is based on slender body
theory, which exploits the large aspect ratio of the fibers by using the slenderness ratio ε = a/L
as an expansion variable. The simplest and most popular version is the leading-order local drag
model [1] which gives a local relation between the velocity of the filament centerline and the
force per unit length, f , that the filament exerts on the fluid:

8πµ (V(s, t)− u(X(s, t), t)) = cDf(s, t) (1.2)

Here u(x, t) is a given background flow, c = − ln(ε2e), reflecting that SBT is logarithmic at
leading-order, and the tensor D = I + XsX

T
s arises from drag anisotropy.

For an elastic fiber modeled as an inextensible Euler-Bernoulli beam, the viscous force
balances the elastic force and we have the equations

V = u(X, t) +
c

8πµ
D (−EXssss + (TXs)s) (1.3)

Xs ·Vs = 0 (1.4)
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Applying the constraint (1.4) to Eq. (1.3) for V yields an elliptic equation for T of the form:

2Tss − |Xss|2T = R(s) (1.5)

The righthand side R in Eq. (1.5) is determined by the background flow and the bending force.
Given appropriate boundary conditions, such as T = 0 for a “force-free” fiber, Eq. (1.5) has a
unique solution T , and Eq. (1.3) can be used to evolve the fiber’s shape, position, and orienta-
tion. Assume that the background flow has a characteristic length-scale W and time-scale γ̇−1

and can be expressed as u = γ̇WU(x/W, γ̇t) in terms of a dimensionless background velocity
U. Then by scaling space on L, time on γ̇−1, and T on E/L2, we can rewrite the dynamics
equation (i.e. Xt = V) in the adimensional form:

V = α−1U(αX, t)− η−1D (Xssss − (TXs)s) (1.6)

where α = L/W , and η = 8πµγ̇L4/Ec is the effective strength of flow forcing. Note that
if the tension is negative, and so fluid stresses are compressive, then in Eq. (1.6) is seen the
competition of a fourth-order diffusion and a second-order anti-diffusion. Note further that if
U is a linear flow then the parameter α cancels out from the dynamics.

1.2.4 Nonlocal SBT and other methods

Nonlocal SBT

The primary appeal of using local SBT lies in its reduction of filament/fluid interaction to a
relatively simple dynamics equation for the filament centerline. However, local SBT neglects
non-local hydrodynamic interactions, and while such interactions are actually of higher order
in ε, they are only weakly separated from the leading order term by a factor logarithmic in ε
(i.e. the next-order terms in Eq. (1.2) are O(1)). Local drag models do not include interactions
mediated by the intervening incompressible fluid, be they from the filament itself or from other
filaments and structures in the fluid.

Different methods have been developed that account for such nonlocal interactions. Keller
and Rubinow [1] developed a non-local SBT that captures the global effect on the fluid velocity
arising from the presence of the filament, making use of the theory of fundamental solutions for
Stokes flow [2]. Their approach yields an integral equation with a modified Stokeslet kernel on
the filament centerline that relates the filament forces to the velocity of the centerline. Johnson
[3] added a more detailed analysis and a modified formulation that included accurate treatment
of the filament’s free ends, yielding an equation that is asymptotically accurate to O(ε2 log ε).
Götz [4] also derived a nonlocal SBT, and performed a detailed analysis of the case of straight
filaments, establishing a connection with Legendre polynomials. Shelley & Ueda [5, 6] were the
first to design a numerical method based on a non-local SBT for simulating flexible filaments.
Their interest was in understanding the dynamics of a growing and buckling flexible filament,
motivated by observations of phase transitions in smectic-A liquid crystals.

Tornberg & Shelley [7] developed a stable and numerically tractable version of nonlocal
SBT for flexible filaments with free-ends, and for this formulation devised specialized quadra-
ture schemes for nearly singular integrals and efficient implicit time-stepping methods that
removed the time-step constrained associated with the bending forces. In their formulation,
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Eq. (1.2) is replaced by
8πµ(V −U) = −Λ[f ]−Kδ[f ] (1.7)

where
Λ[f ] =

[
(c+ 1)I + (c− 3)XsX

T
s

]
f (1.8)

is a local operator whose leading order logarithmic behavior is given by cD, and

Kδ =

∫ 1

0

ds′

(
I + R̂(s, s′)R̂(s, s′)T

(|R(s, s′)|2 + δ2(s))1/2
f(s′)− I + XsX

T
s

(|s− s′|2 + δ2(s))1/2
f(s)

)
(1.9)

is an O(ε0) nonlocal operator that captures filament self-interaction, and R̂ = R/|R| with
R(s, s′) = X(s) −X(s′). Here δ(s) ∼ O(ε) is a function whose inclusion cuts off the growth
of high-wavelength modes that are treated inaccurately by slender-body theory (see Tornberg
& Shelley [7] for a detailed explanation and analysis). Götz’ [4] analysis also gave integral
expressions, in terms of Stokeslet and dipole distributions, for the induced fluid velocity around
the filament, and Tornberg & Shelley used these results to simulate the dynamics of suspensions
of interacting flexible filaments moving in a background shear flow.

Tornberg & Gustavsson [8] exploited the connection between Legendre polynomials and
nonlocal SBT [4] to develop accurate methods for evolving suspensions of rigid filaments.
Saintillan, Shaqfeh, & Darve [9] used low order versions of such representations to evolve
large systems of settling fibers.

The Immersed Boundary Method

The immersed boundary method [10] has also been applied to this class of problems. In this
method, a filament is discretized with connected Lagrangian markers, and their relative dis-
placements by fluid motions are used to calculate the filament’s elastic response. These elastic
forces are then distributed onto a background grid covering the fluid volume, and are used as
forces acting upon the fluid, thus modifying the fluid flow. The advantage of the immersed
boundary method is that detailed immersed mechanical structures can be simulated, but at the
cost of having to solve the flow equations in the entire fluid volume. Stockie & Green [11] used
an immersed boundary method (at moderate Reynolds number) to simulate a single filament
buckling in a linear shear-flow. The filament was treated as an infinitely thin elastic boundary
in a two-dimensional flow and discretized using 40 to 80 Lagrangian markers. In this case, the
fiber width is artificial and is set by elements of the numerical discretization.

Within this method if the fiber is to have a physical width, a fiber microstructure must be
constructed (see, for example, Lim & Peskin [12]). Perhaps the most numerically sophisticated
application of the immersed boundary method, relevant to this review, is work by Nguyen &
Fauci [13], who study the dynamics of flexible fibers as models, in part, for diatom chains
(diatoms are nonmotile unicellular phytoplankton). They employ an adaptive-grid version of
the immersed boundary method [14] and investigate fibers that are composite structures made
of alternating segments that mimic the structure of diatom chains. While a simple beam model,
like Eq. (1.6), describes its bending deformations well, the results of compressive strains are
not.
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Bead-and-Rod Models

While not always theoretically well-separated from approaches based upon SBT or the im-
mersed boundary method, bead-and-rod models have a somewhat independent lineage from
these other methods. In bead-and-rod models, a flexible fiber is represented as a one-dimensional
chain of linked rigid bodies (e.g. spheres, spheroids, rods) that experience local drag and in-
teract with each other through short-range forces (e.g. repulsion, lubrication, friction), while
sometimes neglecting long-ranged hydrodynamic interactions or only including a subset of
them. A recent review of these methods is found in Hämäläinen et al. [15]. One example
of a merging of modeling and computational methodologies is found in Lindström and Uesaka
[16], who develop a hybrid of the method by Switzer and Klingenberg [17], where the fiber
is treated as a linked chain of ellipsoids, and an immersed boundary method [10] where fiber
forces drive the immersing fluid motions through a coupling term in the large-scale momentum
equations. Delmotte et al. [18] have elaborated upon basic bead models by introducing a new
Lagrange multiplier method to impose constraints, and consider several flow problems – Jeffery
orbits, buckling in shear, actuated swimming filaments – using an approximate accounting of
the Stokesian hydrodynamics.

The Regularized Stokeslet Method

Another method for approximately solving the Stokes equations is the method of regularized
Stokeslets of Cortez [19]. Like a boundary integral method [2], the dynamics is formulated
using superpositions of Green’s function solutions of the Stokes equations, though in a reg-
ularized form. Flores et al. [20] use a superposition of regularized Stokeslets and Rotlets to
simulate the dynamics of driven flagellae. In their study, a flagellum is a network of flexible
springs, and a helical shape so composed is driven by a torque at its base. See Smith [21] for
an interesting version of regularized Stokeslets that utilizes a boundary-element approach to the
discretization, and incorporates the presence of walls. Bouzarth et al. [22] use a regularized
representation of a one-dimensional curve of two-dimensional Stokeslets to simulate the non-
local dynamics of flexible, slightly extensible fibers. Olson et al. [23] have recently combined
the regularized Stokeslet method for evolving slender rods with the internal mechanics of an
elastica with intrinsic twist and curvature.

1.3 Experimental Techniques

Systematic studies of the dynamics of elastic fibers in low Reynolds number flows require a pre-
cise control of the flow geometry, as well as the fiber properties. In addition, the determination
of fiber position, orientation, and shape as functions of time requires the direct visualization of
the fiber under flow.

While several pioneering works have observed fiber dynamics in macroscopic systems [24,
25], these investigations were limited to a small number of flow geometries and did not capture
the whole complexity of the fiber dynamics. In recent years the development of micro-fluidics
and new micro-fabrication techniques have helped to overcome these difficulties. Micro-fluidic
flow devices [26] are now commonly used and allow for the simple and precise control of
flow geometry. Due to the small size of these devices, high velocity gradients can be reached
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Figure 1.1: Model fibers fabricated by (a) projection lithography, (b) self-assembly of magnetic
colloids, and (c) polymerization of actin filaments (courtesy O. du Roure, PMMH-ESPCI). The
scale bar represents 10 µm on each image.

while keeping flow inertia small. In combination with recent micro-fabrication techniques they
have become a powerful tool for studying fluid-structure interactions between elastic fibers and
viscous flows.

The micro-fabrication of fibers often aims at the synthesis of very long filaments (see [27]
and references therein) and less attention has been paid to the fabrication of fibers of well-
controlled shape and elastic properties. An example of the fabrication of fiber suspensions can
be found in a recent study [28, 29] that implemented two different fabrication techniques, one
based on a UV projection method developed by Dendukuri et al [30, 31], and another using
auto-assembly of paramagnetic colloids [32], to fabricate fibers directly inside of micro-fluidic
channels (see Fig. 1.1). With the in-situ characterization of fiber mechanical properties (i.e.,
bending modulus) [33, 34], these then yield very well-controlled experimental model systems.
Another approach is to make use of elastic bio-polymers such as actin [35–37] or microtubules
[38], where in the former case Brownian fluctuations can play a role. Fluorescent labeling
techniques make a direct visualization of these bio-polymers under flow possible.

1.4 Simulations and Observations

1.4.1 Instabilities of Fibers
How fibers are buckled by flow is of central importance to much of the interesting nonlinear
dynamics observed in simulations and experiments of fiber motion. Here we first discuss a
prototypical situation where buckling arises as an instability to an otherwise straight fiber – a
straight fiber moving in a linear background flow. We then discuss other prototypical problems
such as the buckling of a fiber held fixed against an impinging flow, and the buckling of flexible
fibers sedimenting under gravitational load.

The stability of free fibers in linear flows - Mathematical analysis

Because of its relative simplicity, local SBT is usually the preferred formulation for studying
linear stability of immersed fibers. Here we first consider fibers moving freely in the flow which
means that they are force and torque free particles. This constraint is satisfied by the so-called
free-end boundary conditions: T |s=±1/2 = 0 and Xss|s=±1/2 = Xsss|s=±1/2 = 0. A perfectly
straight isolated fiber will remain straight in any linear background flow, making this a suitable
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base-state for linear stability analysis. Hence, we assume that the background flow is linear and
incompressible, that is U(x) = A · x with tr(A) = 0. A straight fiber can be represented as
X(s, t) = Xc(t) + se(t) with Xc its center point, and e a unit orientation vector. Inserting this
form into Eqs. (1.6) & (1.5), and applying the conditions of zero total force and torque, yields

Ẋc = AXc, ė =
(
I− eeT

)
Ae, T̄ = −η

4
(eTEe)(s2 − 1/4) (1.10)

where E = (A + AT )/2 is the symmetric rate-of-strain tensor. Hence, the rod center is carried
with the local flow, the orientation vector obeys Jeffrey’s equation [39], and the tension T̄ is
quadratic in s2 with its sign determined by the orientation of e relative to the principle axes
of E. Thus, if the fiber is aligned with compressive straining of the flow then the tension is
negative and hence compressive. This is the necessary condition for buckling.

The case of 2D flow, with the fiber moving in the 2D plane, is particularly simple. By
linearizing Eqs. (1.5) & (1.6) about the straight-fiber solution found in Eqs. (1.10), one can find
a scalar equation governing the amplitude w of an in-plane perturbation transverse to the fiber:

η
(
wt − (eT⊥Ae⊥)w

)
= 2T̄sws + T̄wss − wssss (1.11)

with boundary conditions wss|s=±1/2 = wsss|s=±1/2 = 0, and where e⊥ = (−ey, ex). This is a
variable coefficient, generally time-dependent equation.

The most straightforward, illustrative case is given by a simple straining flow u = (x,−y)
where the fiber is moving along the y-axis, which is the direction of flow compression [40].
Then e = ŷ and e⊥ = −x̂ so that eT⊥Ae⊥ = 1, eTAe = −1, and T̄ = η

4
(s2 − 1/4) (which

is negative). For this case, note the lack of any explicit time-dependence from the background
flow. Setting w = eλtf we can consider the time-independent eigenvalue problem

λf = f + sfs +
1

4

(
s2 − 1/4

)
fss − η−1fssss (1.12)

While the variable coefficient nature prevents a closed-form solution, one can easily solve this
eigenvalue/eigenfunction problem numerically. For this we discretize (1.12) using second-order
finite-differences that are symmetric at interior mesh points, and asymmetric near the bound-
aries s = ±1/2. The boundary conditions are represented as asymmetric difference formulae
that couple the unknown boundary values of f (at s = ±1/2) to its unknown interior values.
The approach is identical to that used by Tornberg and Shelley for evolving elastic fiber flows
using nonlocal SBT [7]; see also [36, 40].

With an eigenvalue solver we can track the system’s eigenvalues and eigenfunctions as η,
the effective viscosity or strain-rate, is increased. For small η the straight fiber is stable to
perturbations. With increase in η we find the successive crossing to the right half-plane of
eigenvalues coupled to eigenfunctions associated with increasingly higher order bending modes.
The first three crossings occur at η1 = 153.2, η2 = 774.3, and η3 = 1930, and their associated
eigenfunctions are shown in Fig. 1.2b. These are classical buckling modes.

An earlier related analysis was performed by Becker and Shelley [41] for the case of a fiber
rotating in a linear shear flow. There the focus was on the fiber dynamics as it rotated through
the flow quadrant where the background flow was compressive rather than extensive. For this
time-dependent case they also identified successive transitions to higher-order buckling modes
(see Fig. 2 of [41]) as a forcing parameter, equivalent to η, was increased. The first transition to
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buckling takes place at the same effective value of η (153.2) as for the pure strain case. Using the
local SBT formulation, their numerical simulations studied the very nonlinear shape dynamics
of the fiber above the buckling transition (see Fig. 1.3c). They also showed that fiber buckling
past the first transition gave rise to positive first normal stress differences, and that the predicted
threshold to buckling agreed well with the onset of positive first normal stress differences in
shearing experiments of nylon fibers in glycerin [42]. Their simulations also predicted that
large amplitude flexing of the fiber at large values of η could give rise to negative normal stress
differences.

The stability of free fibers in linear flows - Experimental observations

The buckling of flexible fibers in viscous flows has been investigated experimentally in two
different flow situations: fibers at or near hyperbolic stagnation points or fibers moving in shear
flows (simple shear or Poiseuille flow).

The onset of fiber buckling with approach to a stagnation point has been investigated in
a macroscopic system by Wandersman et al. [25] who used centimetric fibers made of a soft
elastomer. These fibers moved across a viscous cellular flow consisting of a planar array of mag-
netically driven, counter-rotating vortices. Each 2×2 set of vortices then surrounds a hyperbolic
stagnation point. Above a critical value of the control parameter η, fibers are observed to buckle
(Fig. 1.2a). With increasing η more complex fiber shapes are observed (Fig. 1.2b), correspond-
ing to the eigen-shapes predicted by the linear stability analysis discussed in Sect. 1.2. The fluid
forcing regimes in which these different modes are observed was found to be in rough agree-
ment with theoretical predictions. The interesting transport dynamics of these fibers across the
cellular array will be discussed in Sect. 1.4.3.

Kantsler and Goldstein [36] have investigated the deformation of a micrometric actin fiber
held at a stagnation point created in a micro-fluidic cross-slot device (Fig. 1.2c) where, unlike
the experiments of Wandersman et al. [25], transport dynamics do not play a role. This study
reported the deformation of the actin fiber as a function of the control parameter |Σ| = η/4π4,
and is shown in Fig. 1.2d. This work was also in good agreement with the linear stability
analysis for fibers in a simple 2D straining flow. Unlike the larger scale fibers used in the
study of Wandersman et al. [25], microscopic actin fibers are subject to Brownian fluctuations,
though their contribution to the dynamics did not appear to have an substantial influence on the
buckling thresholds.

The deformation of elastic fibers under simple shear was studied by Forgacs and Mason [44].
They performed experiments using millimetric elastomer fibers in corn syrup, driven between
two counter-rotating cylinders in a Couette geometry. They identified a critical fiber length
above which fiber buckling occurs, in qualitative agreement with their theoretical analysis. Vi-
sual observation showed very complex dynamics (Fig. 1.3a) such as “snake turns”, very similar
to the numerical results of Becker and Shelley [41] (Fig. 1.3c), Stockie and Green [11], Del-
motte et al. [18] and Nguyen and Fauci [13] (Fig. 1.3d). Well above the onset of buckling, more
complex dynamics such as helix formation, rotation, and coiling were also reported. Harasim
et al. [35] studied the motion and deformations of actin fibers in a micro-fluidic Poiseuille flow
(Fig. 1.3b). In their study the fiber lengths were on the order of 10 µm, which is not well sep-
arated from the channel widths, and so one expects continuous bending by the Poiseuille flow
rather than a buckling transition. The relation between fiber deformation and the period of the
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Figure 1.2: Fibers at or close to a stagnation point (a) A centimetric fiber (W = 3 cm), made
from a silicon elastomer, is transported in a viscous cellular flow created by electromagnetic
forcing. The more rigid fiber, bottom left, does not deform whereas the more flexible fiber,
top right, undergoes a buckling instability. From Wandersman et al. [25]. (b) Dxperimental
fiber shapes at different control parameters (top row) and shapes from linear stability analysis
(see Sect. 1.2) together with the critical values of the control parameter ηc. From Quennouz
[43]. (c) Actin fibers at a stagnation point in a micro-fluidic device. Snapshots are shown as a
function of time for increasing values of the control parameter (from top to bottom). The scale
bar corresponds to 3 µm. From Kantsler and Goldstein [36], as is: (d) Fiber compression as a
function of the control parameter |Σ| = η/4π4.
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Figure 1.3: Fibers in shear flows (a) Elastomeric fibers in corn syrup in a simple shear flow
created between two counter-rotating cylinders. From the top row to the bottom row the shear
rate is increased. So called snake turns are observed. From Forgacs and Mason [24]. (b) Actin
fibers in a Poiseuille flow in a micro-fluidic geometry. The fiber length is changed from left to
right. The scale bar corresponds to 10 µm. From Harasim et al. [35]. (c) From simulations
using local SBT, the buckling of a flexible fiber in a shear flow at η = 7000. From Becker
and Shelley [41]. (d) Using an adaptive version of the immersed boundary method, simulation
shows very complex fiber shapes emerging in a shear flow. From Nguyen and Fauci [13].

Jeffrey orbits [39] has also been discussed and the studies of Forgacs and Mason [24], Harasim
et al. [35], Slowicka et al. [45] all attempted to map the observed orbits onto the prediction for
Jeffrey orbits of elongated ellipsoids [39].

The buckling of anchored fibers in impinging flows – Mathematical analysis

Using local SBT, Guglielmini et al [46] have investigated the stability of elastic fibers when
held against impinging linear or quadratic stagnation point flows; see Fig. 1.4.

For the linear background flow, U = (x,−y), or the quadratic flow, U = (xy,−y2), the
straight filament, X(s) = (0, s) (0 ≤ s ≤ 1), whose end point at s = 0 is held fixed at x = 0,
provides an exact solution to Eqs. (1.5) & (1.6). The associated base tension is quadratic in s for
the linear flow, and cubic in s for the quadratic flow. In either case the base tension is negative,
and hence compressive. At s = 1, “free” boundary conditions are assumed, while at the fixed
end s = 0 they consider the clamped boundary condition, i.e. fs = 0 within the linearized
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Figure 1.4: Simulations of the buckling instability of a clamped fiber in a linear background
flow. From Guglielmini et al. [46].

dynamics for a filament held straight at the base, and the hinged boundary condition, fss = 0
(free to rotate with zero applied torque). To identify critical values in η for buckling transitions
they discretized the linearized dynamics equations (i.e., Eq. (1.12) for the linear flow case)
and its boundary conditions using Chebychev polynomials in s and posed it as a generalized
finite-dimensional eigenvalue problem for growth rates.

For the clamped filament a first unstable mode corresponding to bending is identified for
both flow fields. The second unstable mode corresponds to a buckling instability (Fig. 1.4) and
the threshold is found to be slightly lower compared to the first buckling mode of a free fiber.
The hinged fiber is always unstable to rotation around the base. Higher modes correspond to
buckling instabilities, and in this case the threshold for buckling is significantly smaller com-
pared to free fibers.

To our knowledge no systematic study of the bucking of anchored fibers in impinging flows
has as yet been undertaken. However, experiments performed on very long fibers flowing in
rough fractures have revealed strong deformation of these fibers when temporarily pinned at
local asperities [47].

The buckling of sedimenting fibers – Mathematical analysis

Li et al. [48] studied the sedimentation of flexible filaments under gravity in a viscous fluid.
They characterized the competition between elastic and viscous forces, induced by gravity,
by an elasto-gravitation number β = πY a4/(4FgL

2). Using a formulation and methods very
similar to those of Tornberg and Shelley [7], they argue that for a fiber settling parallel to gravity,
buckling will occur in an interesting fashion. For a straight, slender filament of ellipsoidal
shape, they show that their nondimensional fiber tension is given by a cubic polynomial in s; cf.
Eq. (1.10):

T̄ = 2s(s2 − 1/4) (1.13)
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Figure 1.5: Simulations of the buckling instability of a very flexible fiber sedimenting down-
wards in a viscous flow. From Li et al. [48].

where −1/2 ≤ s ≤ 1/2 and s = 1/2 labels the leading end of the fiber as it settles downwards.
In this situation the tension is compressive in the leading half, and extensive in the trailing
half. This division arises because the greater fiber mass per unit length near the fiber midpoint
“pushes down” on the leading half, and “pulls down” upon the trailing half. Local flows gener-
ated by the fiber’s descent reinforce this effect. The authors identified a critical value, βc, above
which the straight fiber is unstable to buckling of its leading half. Fully nonlinear simulations of
the results of that instability are shown in Fig. 1.5. The shapes of sedimenting isolated filaments
[18] or pairs of interacting filaments [49] have also been investigated using bead models.

To our knowledge no experimental investigation of these predictions has yet been under-
taken.

1.4.2 Deformation of fibers

In subsection 1.4.1 we discussed the buckling of anchored fibers under a compressive flow.
Such anchored fibers are also deformed by viscous flows when the flow direction is not parallel
to the fiber orientation. In this case no threshold for deformation exists, for a number of simple
flow geometries this situation is akin to a bending beam where viscous forces play the role of a
gravitational load. For more complex flows, as for example in confined geometries or flows with
curved streamlines, numerical approaches have been used to determine the fiber deformation.

Passive anchored fibers, such as the primary cilium, are found in biological systems, and can
also form spontaneously under flow conditions as is seen in the formation of biofilm streamers.
In engineered micro-fluidic flow geometries, micro-fabricated anchored fibers can be used as
flow sensors, or conversely the micro-fluidic flows can be used to measure the bending prop-
erties of unknown materials. Fixed, driven fibers have also been studied to understand the
locomotion of micro-organisms at low Reynolds number.

Rusconi et al. [50, 51] have shown that biofilms formed by bacterial communities develop



Elastic Fibers in Flows 14

Figure 1.6: Fiber bending. (a) A polymeric fiber, fabricated by an in-situ UV projection method,
anchored at a channel wall perpendicular to the flow direction. Streamlines visualized using
passive tracer particles. Inset is deformation of the same fiber with increasing flow rate. Scale
bars are 100 µm. From Wexler et al. [33]. (b) Biofilm streamers formed with wild-type Pseu-
domonas aeruginosa bacteria in micro-fluidic channels of different geometries. The streamers
are visualized at mid-height of the micro-fluidic channel in an unconfined situation (streamer
diameter much smaller than channel height). The scale bar represents 100 µm. From Rusconi
et al. [50, 51]. (c) A flexible fiber formed by growing cells of E. coli bacteria, anchored in
a micro-channel perpendicular to the flow direction. Adapted from Amir et al. [52] (d) Poly-
meric fibers (as in (a)) approaching a restriction in a micro-channel. Deformation occurs when
the fibers get stuck at the restriction. From Berthet [29].
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as long filamentous elastic structures, called streamers, under flow. Their formation can be trig-
gered by the laminar flow of a fluid around re-entrant corners (Fig. 1.6b) and their presence can
lead to catastrophic disruption of flows in environmental and medical systems due to clogging
[53]. The shape of these streamers under flow is a function of the ratio of the viscous to elas-
tic forces encapsulated in η. The shape of elastic fibers within flows with curved streamlines
has been determined numerically by Autrusson et al. [54] for fibers anchored, either hinged or
clamped, at given positions near a two-dimensional corner. This work shows that, due to ten-
sion and bending forces within the fibers, the fibers do not align with the flow but rather cross
flow streamlines. This is in agreement with the experimental observations from Rusconi et al.
[50, 51] shown on Fig. 1.6b.

Amir et al. [52] studied the flow-induced bending of single-cell Escherichia coli growing
from slits in the side-walls of a micro-fluidic channel. (Fig. 1.6c). Their goal was to investi-
gate growth of the organism’s cell wall. By applying a flow perpendicularly to the cells, the
experimental set-up corresponds to a simple bending beam experiment where the force applied
to the cell results from the viscous friction of the fluid. By estimating this viscous force and
using linear elasticity theory, the authors were able to estimate the bending stiffness of the E.
coli cells from the measured deflection. The simple hydrodynamic set-up gave values similar to
those obtained using much more costly techniques such as AFM measurements.

Another biological example of a flexible fiber attached to a wall and subject to flow forcing
is the primary cilium. The primary cilium is a non-motile isolated hair-like protrusion from a
cell into the extracellular space and is found in a wide variety of vertebrate cells. Among other
things, the primary cilium is believed to act as a mechanoreceptor by bending in response to
flow as is observed in kidney tubule cells. Its dynamics has been investigated in a combined
experimental and theoretical study by Young et al. [55]. The authors showed that the bending
dynamics of the primary cilium could be accurately described as an elastic beam whose base,
or anchor point, is attached to a rotational nonlinear spring. This spring models the mechanical
response of the basal cell membrane as it is distorted by the bending of the cilium.

Fibers fabricated by the in-situ UV projection method (see section 1.3) have been observed
to bend in micro-fluidic flow geometries. In a confined flow geometry where the diameter of the
fibers approaches the channel height, freely moving fibers approaching a restriction were found
to bend before flowing through (Fig. 1.6d). The bending occurs in a situation where both ends
of the fiber are pushed against the entry of the restriction, and corresponds again to a simple
beam bending experiment. The force exerted on the fiber can, in the situation where the fiber
blocks the whole channel width, be easily estimated using lubrication theory, and so again the
mechanical properties of the fiber can be estimated [34].

The flow geometry becomes more complex when the fiber is attached to only one side wall
in a confined channel. Then liquid can flow above or around the fiber which only partially blocks
the channel. An experimental realization by Wexler et al. [33] uses fibers, attached to the wall
of a micro-channel and perpendicular to the flow direction. The streamlines are visualized using
tracer particles and show the complex flow profile (Fig. 1.6a). A theoretical model [33] gave
insight into the competition between bending and leakage flow, showing favorable agreement
with the experimental results, and was also used to measure fiber rigidity (as was done for E.
coli cells). By knowing its mechanical properties, such a fiber could, in the future, be used as a
flow sensor in micro-fluidic devices.

Driven elastic fibers moving in a viscous fluid become deformed as has been observed by
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Figure 1.7: Driven fibers. (a) A centimetric fiber being rotated in a viscous fluid. From left
to right the control parameter η is increased by increasing the fiber length. Superpositions of
snapshots at different times are shown over one rotation period. From Coq et al. [56]. (b)
Successive shapes of an actin filament attached to a magnetic bead beating in a viscous fluid as
a function of time (snapshots shown every 80ms) and analytical solution of the time dependent
shapes. From Wiggins et al. [57].

Qian et al. [58] and Coq et al. [56]. Both studied the driven rotation of long elastic fibers
tilted relative to their rotation axes in a viscous fluid and observed a transition from a straight
fiber towards a helical shape (Fig. 1.7a). The induced helicity generates a propulsive force
along the axis of rotation. A later study investigated the collective dynamics of a micro-carpet
made of hundreds of slender magnetic rods [59]. In early work Wiggins et al. [57] studied the
deformation of an elastic fiber attached to a bead that was driven by an optical trap (Fig. 1.7b).
Also in this case the deformation led to a propulsive force. Such experiments have helped to
understand the mechanisms of microorganismal propulsion, the action of ciliar carpets as are
found in the human lung, and symmetry breaking in early development [60, 61].

1.4.3 Deformation and Transport
That fibers can be deformed by flow is expected to modify their transport properties. This
link has been established theoretically in a number of situations, and has been studied, as yet
somewhat less, through experiments.

From their numerical study of fiber-flow interactions Young and Shelley [40] predicted that
flexible fibers could move as random walkers across a closed stream-line flow. Here the back-
ground flow is a two-dimensional array of counter-rotating vortices where every 2× 2 subarray
of vortices is centered on a hyperbolic fixed point for the flow; see Fig. 1.8b. Roughly speaking,
if a fiber is floppy enough it will tend to be trapped, once there, inside of vortices. However, if
it is between vortices it is drawn towards the stagnation point while being stretched out by the
local hyperbolic flow. Nearing the fixed point is becomes compressed by viscous stresses in the
manner described by their linear analysis, and the fiber frequently buckles. This buckling, with
its many degrees of freedom, yields an effective randomness in the direction from which the
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fiber exits the stagnation point zone. This dynamics also tends to keep fibers along the back-
bone of the flow composed of stagnation points and their connecting stagnation streamlines.
The precise transport properties also depend in a non-trivial way on fiber flexibility and length.
Numerical simulations by Manikantan and Saintillan [62] confirmed these basic findings and
addressed the role of Brownian fluctuations which were shown to increase trapping of filaments
in vortices and thus also decrease transport across the vortex array. See Bouzarth et al. [22] and
Young [63] for a numerical study of two fibers interacting in such cellular flows.

While the experimental realization of such a flow is difficult, Wandersman et al. [25] have
shown that a flexible fiber can indeed escape more quickly from a given vortex of a cellular
flow compared to a rigid fiber. The complex fiber dynamics of such an escape is shown on
Fig. 1.8c. Note that rigid fibers also show non-trivial dynamics in such flows when the fiber
length becomes comparable to the cell size of the cellular flow.

In Poiseuille channel flow, flexible fibers have been shown to exhibit stable trajectories and
to accumulate at distances from the wall that are a function of their flexibility [45]. Reddig
and Stark [64] and Chelakkot et al. [65] have shown numerically that semi-flexible polymers,
described using bead models, show strong cross-stream migration. Using semiflexible actin
filaments in micro-fluidic geometries Steinhauser et al. [37] have shown experimentally that
shear induced migration takes place towards the walls in very confined channels.

The theoretical work of Li et al. [48] shows that the sedimentation dynamics of fibers is sub-
stantially altered by their flexibility. If the filament is allowed to bend even slightly in response
to gravitational load, there can arise a coupling between its translational and rotational motions,
leading to its reorientation with respect to gravity. Because the orientation of the filament di-
rectly determines the direction of its velocity this leads to a non-trivial translational motion in
both vertical and horizontal directions. In particular, the trajectories of flexible sedimenting
fibers are restricted to a cloud whose envelope is determined by the elasto-gravitation number
β introduced in section 1.4.1.

And finally, buckling instabilities can perform important functions for living micro-organisms.
As shown by Son et al. [66], some mono-flagellated bacteria perform a random re-orientation
of their swimming direction (a form of run-and-tumble dynamics) by inducing a buckling in the
flagellar “hook” at the base of the flagellum; see Fig. 1.8a. This is accomplished by reversing
the flagellar motor direction which produces a compressive load on the flagellar hook.

1.4.4 Fiber-fiber interactions and suspension dynamics
The majority of the work reviewed thus far concerns the interactions of single elastic fibers with
background flows. There have been comparatively few theoretical or numerical studies on how
multiple fibers, or ensembles of fibers, interact with each other. Recent work in this area is
reviewed nicely by Hämäläinen et al. [15] but we shall mention a few here. Several studies (e.g.
[17, 67, 68]) studied the rheology of flexible fiber suspensions by treating each fiber as a chain
of linked rigid bodies (e.g. spheres, spheroids, rods) that experience local drag and interact with
each other through short-range forces (e.g. repulsion, lubrication, friction), while neglecting
long-ranged hydrodynamic interactions or only including a subset of them. Their inclusion is
of course very costly in terms of simulation time.

Joung et al. [69] developed a bead-and-rod model of a slightly flexible fiber that accounted
for short range lubrication interaction between interacting fibers, as well as long-ranged hy-
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Figure 1.8: (a) High-speed images of a mono-flagellated Vibrio alginolyticus bacterium show
the microorganism executing an abrupt and random change in swimming direction. This is
mediated by a buckling instability of the hook linking the flagellum to the body. Images are
shown every 10 ms and the scale bar corresponds to 3 µm. Adapted from Son et al. [66]. (b)
Simulations of the random walk of a flexible filament across a cellular flow. From Young and
Shelley [40]). (c) Dynamics of a flexible macroscopic filament escaping from a vortex within
a cellular flow. From experiments of Quennouz [43]). (d) From simulations, (1) the trajectory
of a sedimenting fiber and (2) corresponding filament shapes. (3) Steady state shapes of fibers
with increasing flexibility (decreasing β). From Li et al. [48].
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Figure 1.9: Simulations of flows with many flexible fibers. (a) The buckling dynamics of 25
flexible fibers interacting in an oscillating shear flow. The numerical method is based upon
nonlocal SBT. Adapted from Tornberg and Shelley [7]. (b) From a simulation that combines
nonlocal SBT with boundary integral methods for immersed surfaces, the bending dynamics of
100 flexible fibers attached to a sedimenting sphere. From Nazockdast and Shelley (in prepara-
tion).
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drodynamic interactions between beads. In a periodic cell they simulate up to 90 fibers, and
recover, for example, the experimental result of Goto [42] that flexibility increases the suspen-
sion viscosity relative to the case of rigid rods. Tornberg and Shelley [7] use nonlocal SBT
and a continuum description of the fiber and its forces to simulate 25 filaments in a periodic
box and interacting under periodic shear. One interesting aspect of this simulation was the
demonstration that hydrodynamic interactions were sufficient to drive buckling instabilities of
the initially straight fibers in the suspension (Fig. 1.9a). In recent modeling work related to
subcellular processes in developmental biology, Nazockdast and Shelley have been merging
nonlocal SBT with boundary integral methods for immersed surfaces. Using such an approach,
Fig. 1.9b shows the hydrodynamically mediated bending of 100 flexible fibers, or hairs, at-
tached to a solid sphere held fixed against an upward flow (in preparation). In building tools
for simulating papermaking, Lindstrom and Uesaka (see, for example, [16]) have developed an
approach that is a hybrid of that developed by [17] where the the fiber is treated as a linked
chain of ellipsoids, and the immersed boundary type method [10] where fiber forces drive the
immersing fluid motions through a coupling term in the large-scale momentum equations.

1.5 Summary and Outlook

In this short review we have surveyed the interaction of flexible fibers with low Reynolds num-
ber flows, focusing mostly on the central role played by buckling instabilities but also on the
roles of bending and confinement. While we have achieved a good theoretical understanding of
how single, or a few, fibers interact with a flow, much less is known of the ensemble behavior of
suspensions of flexible fibers. This is due in large part to the computational cost of simulating
such suspensions though there have been recent and dramatic advances in simulating related
problems using fast summation strategies implemented within massively parallel environments
[70]. Another obstacle to progress is the lack of good mathematical tools for modeling suspen-
sions at the continuum level when the microstructure has many degrees of freedom.

From the experimental point of view, successively more precise model systems – both
micro-fabricated and biological – have been developed over the last years, leading to a number
of careful investigations of single fiber dynamics under flow. These observations have led to a
more precise understanding of biological systems and have paved the way to applications in the
engineering of micro-fluidic devices. While accessing macroscopic suspension properties, in
particular for semi-dilute or concentrated suspensions, does not require particular experimental
care, the link between macroscopic behaviors and fiber flexibility is not yet well established.

One reason for desiring such an understanding is that fiber suspensions may show new
dynamical states, perhaps akin to the viscoelastic turbulence evinced by driven polymer sus-
pensions, and perhaps intimately related to the stretch-coil instability analog to the coil-stretch
of coiled polymers. Concentration effects are also especially interesting in flexible fiber suspen-
sion, as one anticipates not only overlap concentration effects, but also new mechanics arising
from ordering transitions as are seen in polymer liquid crystal systems. Finally, a deeper under-
standing of fiber suspensions may shed light onto the dynamics of biological structures, such
as the centrosomal microtubule array and the mitotic spindle, which are both self-assembled
structures that mediate cell division.
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